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Remarks on BIB Designs with Repeated Blocks 

by L. Pesotchinsky 

lo  Introduction and Summary. 

Let V denote the set of v elements 1,2,...,v. A balanced incomplete 

block design with parameters v, b, r, k, X, b* denoted further as 

BIBD(v,b,r,k,\|b*), is such a set of b elements, referred to as blocks^ that: 

1) each block contains exactly k elements of V, 

2) each element of V occurs in exactly r blocks and each pair 

of distinct elements of V appears together in exactly \ blocks, 

3) there are exactly b* distinct blocks among all b blocks of BIBD. 

If b* < b then such design is called BIBD with repeated blocks. 

The construction of designs with repeated blocks has interesting applications 

in experimental designing, controlled sampling and some other fields. As 

the examples we can consider two settings. At first, suppose that an industrial 

process depends on v controlled factors x. ,xp,.,,.. ,x  and also on some 

number of unknown and uncontrolled parameters, the situation common in 

industrial conditions when x, ,x?,,..,x  are technological parameters and 

the others are conditioned by variation in raw materials and so on. Then 

we can "tune-up" the process by changing levels of controlled parameters 

with accordance to some experimental design and after the data analysis 

find the optimal levels of x.!s, 1 < i < v, corresponding to the set 

of unknown uncontrolled variables. If the experimental scheme is once 

established, then we can manage to perform an "up to the moment tune-up" 

under the condition that the variation of unknown variables does not occur 

in relatively small intervals. 



From a practical point of view it is too risky to variate all v 

technological parameters simultaneously because we can reduce the effec- 

tiveness of the process by the choice of points too remote from the optimal 

one established on the previous step.  As usual it is sometimes impossible 

to try certain combinations of x.'s for the technological reasons.  The 

solution for such a setting could be in choosing "experimental units" of k 

factors from v and including in a set of such units only those which can 

be realized practically.  The structure of the design inside the units can 

be arbitrary, depending on our knowledge of the process,  consideration of 

the time and cost conditions,, etc. 

It is easy to notice that the choice of a BIBD for the set of experi- 

mental units would provide the simplicity of the scheme and equal conditions 

for all x.'s, as well as meet all the demands above, provided we could 

construct such BIBD's including "favorable" (or the most informative) blocks 

and excluding "unfavorable" ones. 

The same reasoning can be implemented in a problem of controlled sampling, 

when the goal is to obtain an unbiased estimator of the population mean. 

Without going into details, we can mention that if the population size is 

v and sample size is k,  then the sampling design based on BIBD with the 

block size k can be used.  And like above it is desirable to include in 

the support of the sampling design favorable combinations of elements and 

exclude unfavorable, the latter is especially important if we have to exclude 

the combinations of elements with the same, say, geographical or economical 

conditions. It is also interesting to increase the measure of favorable 

combinations, that is, to copy the corresponding blocks maximal possible 

number of times. 
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In the last years the papers of Foody and Hedayat (1976), Vfornn (1975)* 

van Lint (1971), van Lint and Eyser (1972), Chakrabarti (1963) and many- 

others were devoted to this class of problems.  The properties and algorithms 

of construction of BIBD's with repeated blocks were studied and some 

bounds on b* were obtained in the above mentioned works. 

In this paper the structure of some subsets of supports,, that is 

specified in some way sets of distinct blocks, is studied and a "conditional" 

inequality for obtaining lower (including sharp) bounds on b* is considered. 

Let E denote the set of distinct blocks (support) of a BIBD and E. — the 
J 

set of distinct blocks repeated «j times,  j < X, E = .U   E..  Thus, if 

n. is the cardinality of E.,  n. = I E.I,  then 
«3 0   a   y 

X 
b* = ^ n.    and 

J=l J 

(1.1) 

X 

o=i  J 

.Among all BIBD's with the fixed values v and k we can specify 

those with the least possible value XQ    of X,    denoting them as 

i = BIBD(v,b„,r^,kA„ lb*), where b* is the minimal value of b* 
"o 0 0   0 0 0 

corresponding to b„. 

low it is interesting to find out what could be the values of b*'s 

for BIBD's with X  = tX~    and how the sharp bounds on b* could be 

obtained. Also from the point of view of applications the structure of 

E.'s and especially of E , that is of the set with the blocks copied 

maximal number of times, is of some interest. 
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In section 2 we consider the case of   \Q = 1.    The structure of   £. 

and lower Bound on   b*    (if   b*-b* > 0) are found.    The bound obtained 

is sharp either for any fixed    k,    or if    k = 3   for arbitrary    v    not 

equal to   9» 

In section 3 an inequality for lower bound of   b*    depending on 

cardinality of    E.     is obtained and some examples are given,,  including 

the sharp bound    b£ > 22    in case of    v = 8,  k = 3>  the corresponding 

design was constructed by Foody and Hedayat   (1976). 

2.      Designs with Repeated Blocks and X„ = 1. 

Suppose that a BIBD(v,b,r,k,;\.|b'*) =3    is not merely a   \-repetition of 

a    BIBD    0„    with    \_ = 1,     that is    b* > b^ = b* = ~)7~=M  .    We can find 0 0' 00      k(k-l; 

now the lower bound for    b*-b0« 

Theorem 2.1«    Under the above condition   b*-b0 > 2(k-l).    For the proof 

assume that there exist two elements    0L    and    ß    such that their pair 

inclusion occurs in some block of    E. ,     and in    E'   = E, U  E-U-'-UE.   . 

exist blocks with   oc    and    ß.    Then assume that their exists such element 

i    that pair inclusions   öi    and   ßi    belong to    E'.    Then the minimal 

number of distinct blocks in    E'    with these inclusions is equal to    k    iff 

they are as follows: 

ai  h ••' \ a± h '" Jk 

pi    i,   • • •  i, ßi    J^  • • •   3-^ 



In the same way, considering inclusions 0£i  and ßi, we come to the 

conclusion that the minimal number of distinct blocks in E1  containing 

a    and ß is equal to k (k-l). This number corresponds to the situation 

with even \, iff E' = E. /„ and the structure of E. /p is represented 

by four matrices [k-l x k]: 

(a|M) ,  (a|M*) ,     (ß|M) ,  (ß|M*) 

where M, M* are matrices  [k-l x k-l] with the same distinct  (k-l) 

elements, any any two rows of M and M* have exactly one common element 

(e.g.  M* can be the transpose of M). 

How, if we can not find such oc and ß as assumed above, then either 

E, = </>    and it means that any pair inclusion belongs to at least two blocks, 

thus b* > 2bQ, or E'  is itself a BIBD 3 '  with v = v', r = r' b = b' 

and k, A, as in J .    For the number of blocks n  in E  we have 

= v(v-l)-V (v'-l) 

*     k(k-l) 

and     it     implies that for    3 '  ^n = 1*     r^aen 

v! (v'-l)      . ,  .     , -T4r-rT^ = b'  > v'   , 
k(k-l; o —        ' 

thus 

v' -1 > k (k-l) 

and 

b'*> 2b^ > 2k(k-l)+2 > i|(k-l) 



(b'* > 2b' because any pair of E! belongs to at least two blocks, 

otherwise there is a block repeated \ times, contradicting the fact 

E'flK = <i>).    Also if such a and ß exist but we can not find i 

that «i and ßi both belong to E', then we can consider separately 

sets of blocks with a and ß,  say Ey, and E', E^, E' c: E', El n E' = 

and so on. 

To complete the proof we can write 

b* = ^+ _|n. >n^+Mk-l) 

and 

1 X~1 
b0 = \ +  2  E nj  > 

(once again,  the latter because any pair of elements which occur in    E' 

appears at least in two distinct blocks).     Both these inequalities imply 

b*-b0 > 2(k-l)  . 

Mote:     In the same manner as. above we can show the potential existence of 

the designs with 

b* = bQ + 2(k~l)  + 2p , 

where 

v~l 0 < p < r-k+1 = ~i -  (k-l) —     — k-l 

The existence of such designs  is proved below. 

Examples. 

2.1. Let us consider a permutation of two elements QL and oc in a 

BIBD (v, bQ, rQ, k, l|b0) = J . By this method we obtain BIRD $^, 

and JJ'n have exactly bn - 2(r -l) common blocks, and thus a 
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BIBD $ = $    U J I    has b* = bQ + 2(rQ-l) distinct blocks. Now, if 

r = k+p, we have the design as in theorem 2.1 above.  The lower bound 

is reached for r„ = k,  that is for symmetric BIBD with v = k(k-l)+l. 

2.2.    For k=3 the symmetric BIBD corresponds to v = 7, and since 

any BIBD with k=3 and v > 15 contains at least one subsystem of 

blocks isomorphic to 3Q =  BIBD  (7,7,3,3,1/7) the bound can be reached 

also for any v > 15.  If v - 13 and k = 3, we can use nonisomorphic 

designs  Jn and J'  as presented by Hall (1967, p. 237) to obtain the 

same result, and for the exclusive case of v = 9 we can prove that 

b*-b0 > 6.  Really, if b*~b0 = h    in this case, then the structure of 

E!  is as in theorem 2.1 and only 6 elements are engaged in E!.  But then 

in 8 blocks of E.  we should have occurrence of each of the rest 3 

elements four times, which can be done only in 10 blocks.  Thus the 

construction of a BIBD with b* = b +U is impossible in this case. On 

the other hand b* = b„+6 can be reached as in example 2.1) above. 

In the next part of the section we will find the conditions under 

which a set E  of blocks is a part of support of a BIBD, 

Lemma 2.1.  Let 5 be a BIBD with X > 1 and the support of Ö    consists 

of E,  and E« = U." E..  Suppose there exists a BIBD  #_ with \_ = 1 
A. J=±  J 0 0 

which support contains E . Then exists a BIBD $  . with A,n = 1 with 

the support containing R U a., where a. is an arbitrary block of E'. 

For the proof let us denote the incidence submatrix corresponding to 

E"  as A^  = [n' x v],  Xn + n' = bQ\. 
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Dae to the condition of the lemma there exists such a set of blocks 

E* that the matrix A* corresponding to it satisfies the equation 

Bl = ^1^1 = XA*TA* = ^B* * 

Suppose, that we can not construct E* with A* having a1  as its 

first row.  Then for any set of blocks  b_,b ,...,b , / 

nvA. 
Bn-a a - X  b. ^ (\-l)B* , 

it means that we can not construct E* without a,, contradicting the 

assumption. 

The lemma enables us to prove the main result of the section: 

Theorem 2.2.  A set E.  of blocks copied \ times is a part of support 

of a BIBD(v,b,r,k,\|b*) iff it is a part of support of a 

BIBD(v,b0,r0,k,l|b0). 

Proof. We can use the induction with respect to the parameter n = \\\ • 

The basic statement for n. = 1 or 2 is evident, and suppose the statement 

of the theorem is valid for n = n.  Then, if n = n+1, we can construct 

using the assumption for the set of blocks E\a,  (a, e K ) such set 

of blocks E* that (\\ a } U E* is the support of a BIBD with \ = 1. 

Then we can use lemma 2.1 with block a., added to E' X    times to prove, 

that there exists a set of blocks E* containing a,. Thus the proof is 

accomplished. 

Examples. 

2.3.  Let us consider a BIBD with v = 1,  k = 3-     Since any two blocks 

of such design with \    - 1    (hn=7) have one common element, it follows 



from theorem 2.1 that K  can consist of 1 or 3 blocks,, because any 

two blocks determine the third with the common element and four blocks 

determine the other three. On the other hand it means that b* > 11 if 

n. < 7, because then n < 3» 

2.4. For the same situation the fact n= 1 or 3 implies that if 

b* = 12, then n = 3 (else b* > 13)?. and it means that all 7 elements 

belong to EL .  The number of blocks 9 in E'  multiplied by 3  (the 

number of pairs in each block) is the total number of pairs in E", and 

since we must have 12 distinct pairs in E' we can write 

X \ 
(2.1) £ x = 12 ,     I J x = 9-3 , 

j=2 d ö=2   J 

where x. is the number of pairs which belong to j distinct blocks. 
J 

(2.1) implies 

(2.2) I    (j-2)x = 3 , 
0=3      J 

but with any pair of elements we can have at most 2 blocks, because the 

elements of such pairs already belong to E.  with in .total 3 other 

elements, thus x. = 0 for j > 3 contradicting (2.2). So the 

construction of BIBD (7>b,r,k,\|12) is impossible. The reasoning 

above can be illustrated by the following construction; without loss 

of generality we can have E. = 123, 1^5, l67| then with any pair, say 

2k,  we can have in E' only 2 blocks (2k6  and 2^7 )> thus x. = 0 for j > 3. 

In the same way we can prove that a BIBD with b* = bQ + 2(k-l)+p does 

not exist for p < k-1. 
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For the values of X    > 2 we can not expect meaningful results charac- 

terizing the properties of different sets E. e E with respect to the design 

3n with \ = \ > 2, because the latter itself can have repeated blocks. 

The study of supports of such designs, namely with X  = XQ  > 2,  could be 

simplified by constructing the "minimal" design $„ with the least size 

of support b .  This problem is difficult itself and a method for 

evaluating b  is considered in the next section. 

3-  The Conditional Bounds for the Support Size. 

We will now use the information about the size of E  to obtain some 

bounds on b .  As our sources of such information we can use either 

theorem 2.2 (for the case of Xn =  l), or some auxiliary facts, such as 

e.g. theorem 10.2.2 from van Lint (197^ P- 100).  The latter states 

that if blocks b..  and bp occur e..  and e_ times in E and Xip 

is the number of objects common to both of them, then 

\k - rX10 2 
(3.1) (|__k)(f--k)> (     12) . 

Sl     e2 TX 

\ (    i \ 

In particular, if e, = e = X,     then \.p = 0 or 1 and since r = -=*-=—- 

we have from (3-1) 

(3-2)     or 

(v-k) 

(v-k) 
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It follows from the first inequality of  (3.2) that    v > k >     so with 
2 

v < k      we can not have disjoint blocks in    K.     If    v = 8    and    k = 3 

we can prove the stronger fact. 

Lemma 3-1-     For the    BIBD  (8,   56 g>  21 j, 5, \|b*) 

\=   l\l  <1  • 

2 
Since here v < k  we have to prove only that two joint blocks can not 

be included in E  (obviously we can not have in K  three of them). 

Suppose that two such blocks, say 123 and 1^5 are in R .     Then 

it follows that three blocks with element 1 and other elements must 

be included in R /'. 

167,  l68,  178 e E,    . 

Then we can write, denoting the number of copies of block ijk as e. ., , 

5 
£ e._,ft = \/2,    where aß = 67,  68 or 78 
i=2 x P 

(3.3)   and 

8 
£ ei~-a = ^ where ij = 2U, 25, 3^ or 35 • 

a=6 

For the number of pair occurrences of the elements 2, 3>  ^,   5    with the 

elements   oc = 6,  7,  8    we have 

5 
(3.^) 2 2 e        +   £   eiaß = k\ , where 6 < ß < 8 and ij 

as in  (3-3).     Taking the sum over   OL - 6,  7,  8    we obtain from   (3-3) 

and  (3.^)s 
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2 • kX + 2 • |p = 12K  . 

The contradiction proves that two joint blocks,  as well as disjoint ones, 

can not be included in   E . 

From the equation   (l.l) we can find that for even   X 

(3.5a) |(b*A) = b-^+    j\K 
fc=l 

where a, = EL, +•••+ n, -EL , -• • • - n ,  and for odd X "i +'°' + VVi —-v* 
\-3 

(3.5b)     | (b*-nj = b-^ + | (2  £ ak+%i} 
k=l 

The values <X       are non-negative, because any pair which occurs in 

E. ,  must appear at least once (in E, ) or more (in other subsets E. 

with j < k). Moreover, if Cf.    = 0, then oc.  = 0 for all i < k. 

Then, if the value n  is the maximal one, we must have a > 0 for 

all k, because otherwise the same design could be obtained by coping all 

k k the blocks of U._n E, . X    times and deleting the blocks of  U. , E., 

thus increasing the value of n . 

Hence in general case we have from (3.5) 

/•z c   \ -U*  -^ 2v(v-l) (3.6a) b* > —-*——• - n. 
- k(k-l)   *• 

and if    n     is the maximal one, 

k(k-l)    " \ 
r-z  CT~\ -U* -_  2v(v-l) ,-, (3.6b) b    > • /.   - /  - n. +1 
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For v = 8,, k = 3  (3.6b) gives us 

b* > 19 

and for v = 7,  k = 3 and b ' > 7 we can obtain onee again 

>* > II  (since n < 3) 

We can also use the fact that 

j>\/2       J 
* 

where [x] is an integer part of x. Thus for v = 8, k = 3 we have 

J[   n . < 8 . 
3 > x/2 3 

((3»7)  simply states that any pair.,  which appears in one of the sets    E., 

j > \/2,     can not occur in any other of these sets.     So     [r-y]     is the 

maximal number of blocks with the fixed element which could belong to 

U E   ). 
j > X/2      J 

More sharp bounds on b* could be obtained if the values &      were 

proper3.y estimated.  This is done below for the case of v = 8, k = 3 

and \0 = 6» 

A BIBD with b = 22 was constructed recently in the paper of Foody and 

Hedayat (1976], and here we will prove that 22 is the sharp lower bound 

for bj. 

'Wo will consider separately different values of the sum 

ng + n,. + n. •- t < 8, and we also need the following fact: 
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Lemma 3.2. Let us consider a set E ,  from a support of 

BIED(8, 56 p 21 p 3, \|b*). Then at least one pair of each block 

of \/p    does not occur in two blocks of \/n- 

For the proof suppose that all three pairs of one block, say 123, 

belong to R /„, it means that three blocks 12a, l3ß, 23/ also belong 
Kj d 

to J^/2. 

Each of the elements 1, 2, 3 has to appear in -5- - -5- = 2\ other 

blocks of BIBD, and we have to consider now three possibilities, 

corresponding to the cases when all of os, ß, 7    are distinct and two 

or three of them are the same. If e.g. a  = ß ^ 7 then a has to be 

in \/2 blocks with each of the elements 2, 3 and hence in 

^.-X _2.|=~ blocks without 1, 2, 3.  But we have k . |- + 3 -2X = 8\ 

blocks with 1, 2, 3 in BIBD so the total number of blocks exceeds or is 

equal to 8\ + -5- = -~- > 56 7-   which is impossible. 

The other cases can be treated in the same way. 

In particular, it follows from the lemma that if v. /p and u . 

denote respectively the numbers of pairs occurring in E /_ \ and \/2 

times, then K/2 < n /g and since 2v, /2 + u^/2 = 3\ /2 , 

(3*8) V2- V2- \/2 * 

Now,  if    t = 8,    then   h    pairs which do not occur in   Ej^ir = E^U E,_ U Eg, 

do not have common elements.     It means that they can not belong to one 

block and thus    ru  = 0,      V     e.^a = 2h,    where   aß    are those k pairs 
3 art -i    iaß 

and   i ^ Q!,ß.     So    6n^- + 5n,- + kn^ = 32    and thus    ng = n,- = 0, n^ = 8. 

Since we can not have    n.  = 0    for all odd    i = 1>3>5     (otherwise it would 
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be possible to construct a BIBD with v = 8, k = 3 and X  = 3), we must 

have n, > Oj the pairs of E  must be there an even number of times, 

so n,  is even and, moreover, n. > k.    Now in our case QL > k    and 

3Q = 3(n,+np-n< ) > 3-k,  because k  pairs aß must appear at least in 

three different blocks each, so from (3.5) 

3b* > 56 + k + k  , which yields b* > 22 . 

In the same way we can prove that if t = 7, then b* > 22. The 

only difference is that we can have either a block in E,  (which was 

in E, rr  above), or E. ^  does not contain one element (that is, 

represents a support of a BIBD with v = 7), in the latter case b*> S8. 

For t = 6 we have to consider the possibilities of 1, 2, 3 or even k 

blocks which could be included in E-,. 
3 

As anasample we can study the case of h blocks,  and we can easily 

prove that it corresponds to    E,    and   E,   •-    as below  (the sets are 

unique to within equivalence): 

E]+56 = 157, 268, 356, 378, i+58, h67 

E,  = 123,  124,  13^,  234. 

It follows from lemma 3-2 that all four blocks can not be included in 

E,.     Moreover,  we can prove that any three of them can not be included 

either. 

Suppose,   that    123,  12k,  13^  e E^,.     Then we have with elements 1,  6 

and 8 the only blocks 156, 158, 167 and 178, but 

c-, ,-r +  e, r-o = en/^r, + e, „0 = 6 - e 156  c158 " cl67   178   ~ 157 ' 
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thus the sum of numbers of pair inclusions 16 and 18 is less  than 12, 

•which is impossible. 

If only two blocks,   say, 123,  13k belong to    E,,    then we can find 

that    3<2p = 3(n_+n -n, -n ) > 2.4+3-5   (it means that each of k pairs 

from E,,  12,  Ik,  23  and 3k must appear at least in two blocks of I.uE, 

and each of 5 pairs 2k,  l6,  18,  25,  27 — in three blocks) and 

3QL   = 3 (n, -n ) = 4+2p     (the right-hand part represents four pairs from 

E,    which have to be in    E,,     and    p    pairs which must be doubled).     It 

can be easily shown that    p > 1,     and thus    p > k,  so from  (3-5) 

3(b*-l) > 50 + k + ^    and    b* > 22.     For    IL < 1    the result follows 

straight from  (3.5). 

Fqr    t = 5    we can prove that the maximal number of blocks in    E^ 

is fivej  then we have 15 pairs which occur in    E. _/-,  at most    5 (= v,) 

pairs which occur six times in    E,    and at least    5 (= M~) ~ which are 

in   E,    three times,  so for    jj,    = v^ = 5    we have as above 

3a-,   = 3 (rL. »n ) = 5+2p,     p    here is equal to 2,5* •• •   •     For    p=2    the 

solutions of the equations 

Wn6 = 5 
*! - n5  = 3 
n^ = 5 

can give us b = £ n. = 21 if n^ = 1, n, = 5, n_ = 8-n ,. n. = n,-+3 

and n,. = 0,1,2,3 or k,  and we can verify that for such values of n. 

BIED can not be constructed. 
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The other case,  p-5,    leads us to the BIBD from the paper of Foody 

and Hedayat   (1976),  and if    |j, > 5 > v,,    then we can use   (3.5) to prove 

that    b* > 22: 

We have 

3^ = 3n   + ^ + 2p , 

3n3 = 2v^  + \i3 

(3.9)      and 

3QJ2 = 3^+^-^-^) > 2n5 + 3(l3-v3-u3) , 

the latter simply states that each of    [x-^    pairs must 'appear in   E. U Ep 

at least in two blocks and each of   28-15 -u,-v,    pairs which do not 

belong to    E.,./-UE, — at least in three blocks.    These equations imply 

2o 
ai'ia2 =   (\~n^  +   (XL\+n2"nl"xl^ = 13   - v,   + -^ > 

9 + ^ (since    v3 < h) ', 
3 3 - 

and thus, because   2p/3 is an integer,  from  (3.5) follows    b* > 22. 

At last we can consider the cases with    t < k.    As in (3.9) we 

can write 

3(iiL-n5) = 1^+20 

and 

a. + a. > 28 - 3t - v, + |ß . 1      2 — 3       3 
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Now,  from    28-31    pairs each may occur in    0,  1,  or 2    blocks of 

E,,    and we have with the help of  (3.8)    3nv  = v-, + (v,+n,) < n, + (28-3t) 

and thus 

r^ < lU - ^ . 

Then 

0^ > 111  - ^ + ^ 

and as above it implies b* > 22 for all cases but one:  t = k    and 

v-7  = |_u = n, = 8.  For the latter we can prove on the other hand, that 

p > 2,    thus P > 5 and from (3-5) 

b* > 22. 

So the sharp lower bound for b0 is 22.  In the mentioned above paper 

by Foody and Hedayat it is shown, that for any b* > 22 there is a BIBD 

with the support size b . 

The  author is grateful to Professors J. Kiefer and A. Hedayat for 

having introduced me to the problem and for helpful discussions. 
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